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The calculation of diffracted intensities from an atomic model

is a routine step in the course of structure solution, and its

efficiency may be crucial for the feasibility of the study. An

intense X-ray free-electron laser (XFEL) pulse can change the

electron configurations of atoms during its action. This results

in time-dependence of the diffracted intensities and compli-

cates their calculation. An algorithm is suggested that enables

this calculation with a computational cost comparable to that

for the time-independent case. The intensity is calculated as a

sum of the ‘effective’ intensity and a finite series of ‘correcting’

intensities. These intensities are calculated in the conventional

way but with modified atomic scattering factors that are

specially derived for a particular XFEL experiment. The total

number of members of the series does not exceed the number

of chemically different elements present in the object under

study. This number is small for biological molecules; in

addition, the correcting terms are negligible within the

parameter range and accuracy acceptable in biological

crystallography. The time-dependent atomic scattering factors

were estimated for different pulse fluence levels by solving

the system of rate equations. The simulation showed that

the changes in a diffraction pattern caused by the time-

dependence of scattering factors are negligible if the pulse

fluence does not exceed the limit that is currently achieved

in experiments with biological macromolecular crystals

(104 photons Å�2 per pulse) but become significant with an

increase in the fluence to 106 or 108 photons Å�2 per pulse.

Received 20 May 2014

Accepted 20 November 2014

1. Introduction

In the last decade, X-ray free-electron lasers (XFELs), which

are new sources of ultrashort (down to a few femtoseconds)

and ultra-intense X-ray pulses, have been developed. These

devices allow one to collect series of single diffraction images

from nanometre-sized to micrometre-sized crystals of macro-

molecules and noncrystalline biological specimens. This has

opened up new possibilities for determining the structures

of biological species which are difficult to crystallize (e.g.

membrane proteins). These methodological and technical

achievements have led to significant progress in the field of

XFEL structure determination. Complete data sets from

macromolecular crystals of already known structure have

been collected, and the quality of the models and the electron-

density maps was comparable with those obtained at

synchrotrons (Chapman et al., 2011; Lomb et al., 2011;

Johansson et al., 2012; Boutet et al., 2012; Kern et al., 2012). A

clear advantage of XFELs over synchrotrons for data collec-

tion has been demonstrated for structures that are sensitive to

radiation damage (Johansson et al., 2013; Kern et al., 2013).

Recently, a protein structure containing a large unknown part
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was first solved using XFEL data (Redecke et al., 2013). Very

recently, single-wavelength anomalous scattering measure-

ments have been performed using an XFEL (Barends et al.,

2013, 2014), and the possibility of determining a protein

structure de novo has been shown (Barends et al., 2014).

At the same time, numerous theoretical and numerical

studies have been concerned with the calculation of diffraction

intensities and, in particular, the problem of how strongly a

diffraction pattern is affected by radiation damage at such

high photon fluences (Quiney & Nugent, 2011; Lorenz et al.,

2012; Curwood et al., 2013). The dose that a sample receives

during a single pulse at an XFEL can exceed the maximal

tolerable dose for a crystal during a whole data-collection run

at a modern synchrotron (Henderson, 1995; Chapman et al.,

2011; Johansson et al., 2013). The possibility of using an

ultrashort pulse length at XFELs allowed the postulation

of the so-called ‘diffraction-before-destruction’ concept,

according to which an interpretable diffraction image can be

obtained before the sample is destroyed (Neutze et al., 2000;

Barty et al., 2012). Electron emission both in atomic photo-

ionization and the Auger process takes place on a time scale of

less than 10 fs (Krause & Oliver, 1979; Neutze et al., 2000),

whereas the consequent processes of overall damage to the

sample (thermalization, breakage of covalent bonds and

Coulomb explosion) occur on a much longer time scale (Hau-

Riege et al., 2004; Bergh et al., 2008). Thus, our study was

performed on the assumption that radiation-induced changes

of atomic configurations affect the diffraction intensity, while

radiation-induced atomic movements have not yet occurred

during the pulse.

In the stationary case, the intensities of diffracted waves are

calculated by conventional formulae of the kinematic theory

of diffraction,

IðsÞ ¼ CjFðsÞj2; ð1Þ

FðsÞ ¼
PNatoms

j¼1

fjðsÞ expð�Bjs
2=4Þ exp½�2�iðs; rjÞ�: ð2Þ

Here, s = (r � r0)/� is the scattering vector and s = |s| =

2sin�/�, where r0, r, 2� and � are the directions of the incident

and diffracted beams, the scattering angle and the beam

wavelength (in Å), respectively, I(s) and F(s) are the intensity

and the complex structure factor of a diffracted wave,

respectively, {rj, Bj}, j = 1, . . . , Natoms are the coordinates of the

atoms and the atomic displacement parameters (ADPs), and

{fj(s)}, j = 1, . . . , Natoms are the atomic scattering factors. The

scaling factor C in (1) is an adjustable parameter in the

crystallographic refinement and includes, among other things,

the duration of X-ray irradiation. We omit this factor in the

formulae below, supposing that it is present implicitly. For

simplicity, we write the formulae for the case of isotropic

ADPs, although they can be extended to the cases of aniso-

tropic ADPs and partial occupancies.

The atomic scattering factor fj(s) is related to the electron-

density distribution in the atom �j(r) by the Fourier sine

transform. For an intense X-ray pulse fluence, the number of

scattering electrons can change significantly during the pulse

so that the electron-density distribution and the scattering

factors become time-dependent. The diffraction intensity

accumulated during the pulse is in this case

IcumðsÞ ¼
R
jFðs; tÞj2pðtÞ dt; ð3Þ

where p(t) is the pulse profile and F(s; t) is a time-dependent

structure factor,

Fðs; tÞ ¼
PNatoms

j¼1

fjðs; tÞ expð�Bjs
2=4Þ exp½�2�iðs; rjÞ�: ð4Þ

Hereafter, time-independent atomic scattering factors are

referred to as conventional atomic scattering factors and time-

independent model structure factors are called conventional

model structure factors, in contrast to the time-dependent

values.

One of the purposes of our study was to examine to what

extent the dependence of scattering factors on time affects the

diffraction intensities. To answer this question, numerical tests

were performed using the model of a cysteine-free and

methionine-free mutant of dihydrofolate reductase (PDB

entry 2d0k; Iwakura et al., 2006). The number of scattered

photons that hit a detector pixel is proportional to the incident

beam fluence. The tests were performed at different values of

the incident pulse fluence, which is the number of photons that

cross a unit square in a pulse.

The first value, which is referred to below as low fluence,

was 104 photons Å�2 per pulse. This value corresponds to the

upper limit currently achievable for macromolecular crystals.

The second value was 106 photons Å�2 per pulse. It is referred

to below as moderate fluence and corresponds to an XFEL

fluence that will be achievable in the near future. The third

value, 108 photons Å�2 per pulse, is not yet attainable, but the

rapid progress in the development of XFEL techniques allows

us to consider it as non-fantastic. Below, we call this value high

fluence. The results of our tests (x3) show that the changes

caused by the time-dependence of the scattering factors are

negligible at low fluence but become significant at moderate

and high fluence values. Thus, with the implementation of the

next generation of XFELs, scattering-factor evolution should

be taken into account in precise calculations of diffraction

intensities.

The basic problem that we address in this paper is the

construction of an efficient practical scheme for the calcula-

tion of accumulated intensities (3). In structure solution by

X-ray diffraction methods, the calculation of a set of theore-

tical values of intensities corresponding to a particular atomic

model is a routine procedure, which is repeated hundreds of

times for different trial values of atomic parameters. The

computational efficiency of this step can play a key role in the

practical feasibility of calculations and has been the subject of

numerous studies (see Afonine & Urzhumtsev, 2004 and

references therein). The idea of calculating instantaneous

structure factors F(s; tk) for a series of time counts t1, . . . , tM
and to use a numerical integration algorithm for immediate

calculation of (3) is not attractive as it requires M times more
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operations compared with the stationary case (equations 1 and

2). An alternative method is to transfer the integration in (3)

to the only source of time-dependence, namely the scattering

factors. This leads to the formula

Icum
ðsÞ ¼

PNatoms

j;k¼1

AjkðsÞ exp½�ðBj þ BkÞs
2=4� exp½2�iðs; rj � rkÞ�;

ð5Þ

where

AjkðsÞ ¼
R

fjðs; tÞfkðs; tÞpðtÞ dt: ð6Þ

Integration (6) should be performed only once for particular

XFEL experimental conditions (setup), while calculations of

intensities using the formula (5) are repeated for every current

set of atomic model parameters. The double sum in (5) makes

direct calculations Natoms times more time-consuming than

calculations in the stationary case (equations 1 and 2). In this

paper, we suggest an algorithm that allows the calculation of

intensities (5) for a time exceeding the time of calculations in

the case of stationary scattering not more than ntypes times,

where ntypes is the relatively small number of chemically

different elements in the structure being studied. Further-

more, within the resolution and accuracy limits typical for

biological crystallography, the calculations can be performed

for the same time as in the stationary case (equations 1 and 2).

It should be noted that the emission of electrons by atoms

under the influence of an X-ray pulse is a stochastic process.

This means that it is impossible to predict the order in which

certain atoms lose electrons for a particular pulse. Here, we

consider ‘expected’ time-dependent atomic electron-density

distributions and scattering factors. In practice, this corre-

sponds to averaging over a number of snapshots for similarly

orientated objects, which gives a single X-ray image (White et

al., 2012, 2013). The fluctuations in individual time-dependent

scattering factors give rise to an additional background in the

image (Lorenz et al., 2012). This background does not depend

on individual atomic coordinates, and we do not touch upon

the problem of background estimation in this paper.

2. Methods

2.1. Efficient calculation of cumulative intensities

Cumulative intensities (3) can be efficiently calculated as

described below. The proof is presented in Appendix A. The

approach suggested was essentially inspired by the paper of

Lorenz et al. (2012), while some of its steps may also be found

in other papers (Quiney & Nugent, 2011; Curwood et al.,

2013). The procedure consists of two parts. The first part

should be performed only once for particular X-ray pulse

parameters, whereas the second part is run many times for

every new current set {rj, Bj}, j = 1, . . . , Natoms of model

parameters. The efficiency of the algorithm is based on the

hypothesis that the atomic model is composed of a large

number of atoms, Natoms, whereas the number of different

types of chemical elements in the model, ntypes, is relatively

small, and that atoms of the same type have similar time-

dependent scattering factors.

2.1.1. Auxiliary scattering factors. The first part of the

calculations consists of three steps and, for every chemical

type of atoms �, results in a set of auxiliary scattering factors,
~ff ð1Þ� ðsÞ, . . . , ~ff

ðntypesÞ

� ðsÞ, calculated as functions of the scattering

angle. We call the first of them the effective scattering factor
~ff ðeffÞ
� ðsÞ and the others the correcting scattering factors. We use

the tilde symbol in ~ff�ðsÞ to indicate the scattering factors

corresponding to the �th chemical element, while fj(s) stands

for the jth atom in the model.

Step 1. For every chemical type �, the time-dependent

atomic scattering factor ~ff�ðs; tÞ is somehow estimated as a

function of the scattering angle and time. We chose an

approach based on the solution of a system of rate equations

(see x2.2), although other approaches can also be tried.

Step 2. The time-averaged values of pairwise products of

time-dependent form factors are calculated for every s value

to form the moment matrix ~AAðsÞ,

~AA��ðsÞ ¼
R

~ff�ðs; tÞ~ff �ðs; tÞpðtÞ dt; �; � ¼ 1; . . . ; ntypes: ð7Þ

Step 3. An eigendecomposition of matrix ~AA sð Þ is performed

for every s value,

~AA ¼ ~VV ~DD ~VV
T
; ð8Þ

where ~DD is a diagonal matrix with the diagonal formed by the

eigenvalues ~��ð1Þ, ~��ð2Þ, . . . , ~��ðntypesÞ of matrix ~AA, and the columns

~vvð1Þ, ~vvð2Þ, . . . , ~vvðntypesÞ of matrix ~VV form an orthonormal set of

eigenvectors. It is supposed that the eigenvalues are enumer-

ated in decreasing order. The values of the effective and

correcting scattering factors are defined for the �th chemical

type as

~ff eff
� ¼

~ff ð1Þ� ¼ ½ ~��
ð1Þ�

1=2 ~vvð1Þ� ;

~ff ð2Þ� ¼ ½ ~��
ð2Þ
�
1=2 ~vvð2Þ� ;

. . . ;

~ff
ðntypesÞ

� ¼ ½ ~��ðntypesÞ�
1=2 ~vv

ðntypesÞ

� : ð9Þ

The decomposition (8) is performed independently for

every s value, making the eigenvalues and auxiliary scattering

factors functions of s. Some consistency rules are applied to

smooth the dependence of the found auxiliary scattering

factors on s (see x2.1.4).

2.1.2. Superposition of diffraction patterns. The cumulative

intensity for the current values of the atomic model para-

meters is calculated as a superposition of the effective inten-

sity and its corrections,

IcumðsÞ ¼
Pntypes

	¼1

jFð	ÞðsÞj2; ð10Þ

Fð	ÞðsÞ ¼
PNatoms

j¼1

~ff ð	Þ
ðjÞðsÞ expð�Bjs
2=4Þ exp½2�iðs; rjÞ�;

	 ¼ 1; . . . ; ntypes; ð11Þ
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where 
(j) is the chemical type of the jth atom in the list. The

first term in the sum in (10),

IeffðsÞ ¼ jFð1ÞðsÞj2; ð12Þ

is referred to as the effective intensity. Auxiliary structure

factors (11) are calculated as the usual structure factors with

the exception that the sets of scattering factors are different.

Any tricks to accelerate calculations (Afonine & Urzhumtsev,

2004) can be applied here. At the same time, in contrast to the

conventional case, the intensity is not now just the squared

structure-factor magnitude but is the sum of an effective value

and a series of corrections. It is worth noting that corrections

are applied to intensities, not directly to scattering factors or

structure factors.

2.1.3. Approximation of the cumulative intensities. Equa-

tions (10) and (11) present the procedure for the exact

calculation of cumulative intensities. Sometimes it can be

simplified within the limits of acceptable accuracy. The

significance of the correction |F(	)(s)|2 in (10) is determined by

the ratio ~��ð	ÞðsÞ= ~��ð1ÞðsÞ. The time of calculations may be

reduced by using only the significant members in super-

position (10),

Icum
ðsÞ ¼

P	max

	¼1

jFð	ÞðsÞj2: ð13Þ

In some cases (see x3.3), acceptable accuracy is reached by

using only the principal member in the decomposition. The

intensity is then calculated by means of conventional formulae

with modified scattering factors,

Icum
ðsÞ ¼ jFeff

ðsÞj2; ð14Þ

Feff
ðsÞ ¼

PN

j¼1

~ff eff

ðjÞðsÞ expð�Bjs

2=4Þ exp½2�iðs; rjÞ�: ð15Þ

These calculations have a computational cost similar to that in

the conventional case.

We say that different time-dependent scattering factors
~ff�ðs; tÞ, � = 1, . . . , n are synchronized if they are proportional

to some common function of time

~ff�ðs; tÞ ’ ��ðsÞ~ff0ðs; tÞ; ð16Þ

i.e. if their dependence on time is nearly the same for a

particular s value. In this case, the moments in (7) may be

presented as

~AA��ðsÞ ¼ ~ff sync
� ðsÞ~ff

sync
� ðsÞ; ð17Þ

where

~ff sync
� ðsÞ ¼

R
½~ff�ðs; tÞ�2pðtÞ dt

� �1=2
; ð18Þ

which are the square roots of the diagonal elements of the

matrix ~AA. The cumulative intensity in this case may be

calculated similarly to as in equations (14) and (15), but with

the use of ~ff sync
� ðsÞ atomic scattering factors. It is worth noting

that in this approach we do not need to know the coefficients

��(s) and the ‘consensus’ scattering factor ~ff0ðs; tÞ in (16). It is

enough to suppose that they exist. Such an approximation

seems to be a little easier than that in (14) and (15) as it does

not require calculation of the eigendecomposition (8) of the

moment matrix. On the other hand, it is based on the

synchronization hypothesis (16), which is not justified in

advance, while the eigendecomposition does not produce too

many difficulties for low-dimensional matrices.

The approach may further simplified by applying the

concept of unitary factors as discussed by Lunin et al. (2013).

In this case, a stricter form of synchronization is supposed,

~ff�ðs; tÞ ’ Z�
~ff unitðs; tÞ; ð19Þ

where Z� is the number of scattering electrons in the un-

damaged �th chemical type. This approach allows estimation

of time-dependent scattering factors for different chemical

elements supposing that the time-dependent scattering factor

is known for only one element. A weak point of this approach

is that the original hypothesis (19) seems to be poorly justified,

especially for large fluence values, and can only be used for

very rough estimates.

2.1.4. Consistency rules. The eigendecomposition (8) of the

moment matrix is not unique even if the eigenvalues are

properly numerated. The sign of any column in matrix ~VV can

be changed arbitrarily. The choice of a particular 	 and s of

auxiliary scattering factors f�~ff ð	Þ� ðsÞg, � = 1, . . . , ntypes instead

of f~ff ð	Þ� ðsÞg does not influence the intensities as only the

magnitudes of the structure factors (11) influence the result of

the calculations. However, the continuity of ~ff ð	Þ� ðsÞ (considered

as a function of s) may be destroyed if the decompositions (8)

performed for close s and s + �s values are not consistent in

the signs of the eigenvectors. This is undesirable when the

values of ~ff ð	Þ� ðsÞ calculated at some grid values are then used

for the interpolation of intermediate values. To avoid this

problem, some consistency rules were applied when

performing the eigendecomposition for a series of s values.

Firstly, starting from the preliminary decomposition calculated

at s = 0, the sign of every found vector ~vvð	Þð0Þ was changed if

necessary to maximize the number of positive components, or,

more precisely, to minimize the value

Qpos ¼
Pntypes


¼1

½minf0; ~vvð	Þ
 ð0Þg�
2: ð20Þ

This value of Qpos is equal to zero if all components of vector

~vvð	Þð0Þ are non-negative. Secondly, for two consecutive points s

and s + �s the signs of the newly found vectors ~vvð	Þðsþ�sÞ

were changed if necessary to have the minimal variance with

the previously defined ~vvð	ÞðsÞ vector,

Qcons ¼
Pntypes

�¼1

½~vvð	Þ� ðsÞ � ~vvð	Þ� ðsþ�sÞ�2 ) min : ð21Þ

The formulated consistency rule assumes implicitly that all

eigenvalues of the moment matrix (7) are different and can be

enumerated in descending order in a unique way. Theoreti-

cally, several eigenvalues may occasionally become equal. In

this case, the maximization (21) should include additional

degrees of freedom corresponding to the non-uniqueness of

the choice of an orthonormal basis in the corresponding
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eigensubspace. Here, we do not discuss this procedure in detail

because on the one hand this event is rather theoretical in

numerical calculations and on the other hand it only becomes

important if scattering factors are interpolated for inter-

mediate s values. Usually, the scattering factors of the elec-

tronic configurations and hence the time-dependent scattering

factors can readily be calculated on a grid that is fine enough

to avoid interpolation.

2.2. Simulation of time-dependent atomic scattering factors

We assume that each atom changes its state independently

of other atoms. The time-dependent form factor of a scattering

centre (an atom or an ion) is then determined by the time-

dependent distribution of electrons over various atomic

(ionic) shells, i.e. by populations of electronic configurations.

These populations are found by solving a system of rate

equations,

dPmðtÞ

dt
¼

P

m0 6¼m

½�mm0Pm0 ðtÞ � �m0mPmðtÞ�; ð22Þ

where Pm(t) is the population of configuration m and �mm0 is

the rate of transition from configuration m to configuration m0.

Photoionization in an inner shell followed by Auger decay is

the dominant process at the photon energies currently used

in X-ray diffraction studies. In addition, we considered the

possibility of radiative decay (fluorescence). The latter is

usually several orders of magnitude less probable than Auger

decay for the same configuration, but fluorescence may be the

only allowed channel for some configurations. Moreover, the

transition rates of photoionization are proportional to the

intensity of the incident radiation and alter during the pulse,

while the rates of Auger decay and fluorescence are constant.

It has been shown that these processes are indeed crucial for

changes in the charge state of the molecule (Santra, 2009;

Son et al., 2011; Moribayashi, 2008). Next in importance are

processes induced by secondary electrons and Compton

scattering. The method of solving the rate equations for the

populations has been used in studies of the effect of the

degradation of a molecule on the resolving power of X-ray

diffraction methods (Lorenz et al., 2012; Lunin et al., 2013;

Sinitsyn et al., 2013).

We calculated the subshell photoionization cross-sections

with the wavefunctions obtained in the Hartree–Fock–Slater

approximation (Herman & Skillman, 1963). The rates of the

Auger and radiative transitions were taken from Moribayashi

(2008), where they were obtained using the Cowan code

(Cowan, 1968). The calculated photoionization cross-sections

for C atoms and ions are in good agreement with calculations

(Son et al., 2011). The photoionization cross-section for

hydrogen is negligible compared with the photoionization

cross-sections for C, N and O.

Initially, all atoms of the molecule are in the ground-state

configuration 1s22s22pk (where k = 2 for C, k = 3 for N and k =

4 for O). In most cases, first the 1s inner shell is ionized. The

photoionization cross-section at such a high photon energy is

extremely small (�10�5 au at a photon energy of 8 keV).

Nevertheless, if the photon flux density is of the order of

108 photons Å�2, the inner shell photoionization rate is high

despite the small cross-section. After photoionization in the 1s

shell, other reaction channels are opened, Auger decay and

fluorescence, followed in turn by an increase in the photo-

ionization probability (e.g. for a given photon energy the

photoionization cross-section of the 2p shell of the carbon ion

C+ is about two times higher than of the neutral atom). The

charge density of the electronic shell gradually decreases

during the atom evolution in the electromagnetic field. It is

worth noting that even under the influence of such an intense

photon flux, the atom does not have enough time to turn into

bare nucleus (fully ionized). Our calculations show that for a

radiation pulse with a FWHM of 10 fs and a peak intensity of

108 photons Å�2 at least one electron is left at the end of the

pulse in 30% of C and O atoms and in 50% of N atoms. Most

often the 2p electron and sometimes the 2s electron remain in

the ion. The radiative transition to the ground state is the only

allowed decay channel of the 2p state. Its probability is small,

as well as the X-ray photoionization cross-section. This

explains why the form factors of all of the atoms at high

photon flux are similar (Figs. 1 and 3): in fact, all the ions are

mostly in the same 2p state.

2.3. Comparison of conventional and time-dependent factors

2.3.1. Atomic scattering factors. It should be noted that the

calculation of auxiliary scattering factors is not the final goal,

but a tool for the calculation of theoretical intensity values.

A common crystallographic practice in comparison of calcu-

lated and observed data is preliminary scaling of calculated (or

observed) values to obtain the best correspondence between

the two sets of values. Usually two global scaling coefficients

are applied, namely the overall scaling factor kopt and the

overall atomic displacement parameter Bopt. We apply a

similar scaling to the two sets of scattering factors before their

comparison. The reason is that the differences in scattering

factors that can be removed by this scaling will be removed

automatically at the structure-refinement step and so do not

require immediate changes in the calculation procedures. The

scaling coefficients kopt, Bopt applied in the comparison of two

sets a and b of scattering factors for N, C and O atoms were

determined by minimization of the weighted discrepancy,

Rcum
f ¼

NC

P

s

jf a
CðsÞ � 	ðsÞf

b
CðsÞj þ NN

P

s

jf a
NðsÞ � 	ðsÞf

b
NðsÞj þ NO

P

s

jf a
OðsÞ � 	ðsÞf

b
OðsÞj

NC

P

s

jf a
CðsÞj þ NN

P

s

jf a
NðsÞj þ NO

P

s

jf a
OðsÞj

;

ð23Þ

where the summation extends over some grid of the resolution

range 0 � s � smax and

	ðsÞ ¼ kopt expð�Bopts
2=4Þ: ð24Þ

The weights NC, NN and NO are equal to the number of atoms

of the corresponding types in the test structure 2d0k.

2.3.2. Structure factors for a test structure. It is common

practice in macromolecular crystallography to compare two

diffraction patterns by calculation of the discrepancy index

research papers

Acta Cryst. (2015). D71, 293–303 Lunin et al. � Calculation of diffracted intensities for XFEL experiments 297



between the two sets of structure-factor magnitudes, while

sometimes the measure of quality is based on discrepancies

in the intensities. In the nonstationary case the intensities are

accumulated with time, so the intensities Icum(s) seem to be

natural values for comparison with others. Nevertheless, to

transform the calculated discrepancies onto a more familiar

scale, we introduce artificial magnitudes

FcumðsÞ ¼ ½IcumðsÞ�1=2
ð25Þ

and use them to calculate standard R factors. In our test, we

used two types of R factors, namely ‘shell’ R factors Rshell(s*)

calculated for a thin spherical shell s* � s � s* + �s and

‘cumulative’ R factors Rcum(s*) calculated for extended

spherical volumes 0 � s � s*. During the calculation of shell

factors, the scaling coefficients kopt, Bopt were fixed for all

shells at some previously determined values, while the opti-

mization for cumulative R factors was performed individually

for every sphere 0 � s � s*.

2.4. Test object

The atomic model of a cysteine-free and methionine-free

mutant of Escherichia coli dihydrofolate reductase (Iwakura et

al., 2006; PDB entry 2d0k) was used in our tests. This protein

crystallized in space group C2 with unit-cell parameters

a = 79.58, b = 56.69, c = 85.14 Å, � = 106.81�. Two molecules of

159 residues each are present in the asymmetric part of the

unit cell. The molecules do not contain S atoms; the number of

C, N, and O atoms is 1660, 450 and 702, respectively. Cl atoms

(one per molecule) were excluded from the calculations. For

the analysis, we chose a protein without S atoms in order to

avoid laborious calculations of numerous unknown cross-

sections and rates of transition between atomic configurations.

3. Results

3.1. Time-dependent scattering factors

The time-dependent scattering factors for C, N and O atoms

were calculated as described in x2.2 for three levels of fluence:

104, 106 and 108 photons Å�2 per pulse. The energy of the

photons was supposed to be 8 keV (� = 1.55 Å). The profile of

the pulse p(t) was supposed to be Gaussian with FWHM =

10 fs. Fig. 1 shows the time variation of time-dependent scat-

tering factors for two scattering angles and different fluence

levels. Similar to other results discussed below, a fluence of

104 photons Å�2 per pulse does not lead to significant changes

in the diffraction pattern. The larger values of fluence result in

changes that should be taken into account in accurate studies.

The calculated time-dependent scattering factors were used

for calculation of the moment matrix ~AAðsÞ (7), its eigenvalues

and eigenvectors. The eigendecomposition (8) was performed

for every s value independently, and the consistency rules were

applied to resolve the ambiguity as described in x2.1.4. Fig. 2

shows the eigenvalues as functions of scattering angle for

different fluence levels. For low fluence, the second and third

egenvalues are approximately 106 times less than the principal

value ~��ð1Þ and the corresponding corrections in (10) are

negligible. For moderate fluence, the third eigenvalue is

negligible, while the second eigenvalue may be essential in

accurate calculations. For high fluence, both ~��ð2Þ and ~��ð3Þ should

be kept in mind. Below, we discuss the influence of correcting

terms.

The analysis of eigenvalues in the previous section showed

that the diffraction pattern is mostly defined by effective

scattering factors. Fig. 3 shows effective scattering factors and

conventional scattering factors for two fluence levels. For low

fluence (104 photons Å�2 per pulse) the difference is invisible,

and the corresponding plot is omitted. Fig. 4 shows correcting

scattering factors ~ff ð2Þ� ðsÞ for a fluence of 106 photons Å�2 per

pulse and ~ff ð2Þ� ðsÞ and ~ff ð3Þ� ðsÞ for a fluence of 108 photons Å�2

per pulse. As seen from the analysis of the eigenvalues, these

corrections are negligible at low and medium resolutions but

may be essential when the resolution approaches 1 Å (sin�/� =

0.5) or better.

In calculations of intensities, effective scattering factors may

be considered to some extent as an analogue of usual scat-
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Figure 1
Time-dependence of atomic scattering factors for scattering angles
corresponding to sin�/� = 0 (a) and sin�/� = 0.25 (b). The scattering
factors for C, N and O atoms are shown in grey, blue and red, respectively.
Circles, triangles and squares denote graphs for fluence values of 104, 106

and 108 photons Å�2 per pulse, respectively. The profile of the pulse (in
relative values) is shown in green.



tering factors adapted to the conditions of a particular XFEL

experiment. To compare them with conventional scattering

factors, the discrepancy index was calculated for thin resolu-

tion shells as

Rshell
f ðsÞ ¼ Rshell

f ðs; kopt;BoptÞ ¼

NCjf
st
C ðsÞ � 	ðsÞf

eff
C ðsÞj þ NNjf

st
N ðsÞ � 	ðsÞf

eff
N ðsÞj þ NOjf

st
O ðsÞ � 	ðsÞf

eff
O ðsÞj

NC

P

s

jf st
C ðsÞj þ NN

P

s

jf st
N ðsÞj þ NO

P

s

jf st
O ðsÞj

;

ð26Þ

where f st and f eff represent conventional and effective scat-

tering factors and 	(s) = koptexp(�Bopts
2/4). The overall

scaling coefficients kopt, Bopt are applied to minimize the

discrepancy for the whole resolution range (1–1 Å; see

x2.3.1). The weights NC, NN and NO are equal to the numbers

of corresponding atoms in the test structure 2d0k. The optimal

values of the scaling coefficients are summarized in Table 1.

Fig. 5 shows that this discrepancy is negligible for a fluence of

104 photons Å�2 per pulse but approaches 5% for a fluence

of 106 photons Å�2 per pulse and 10% for a fluence of

108 photons Å�2 per pulse. Fig. 6 shows the optimally scaled

effective scattering factors in comparison with conventional

scattering factors for the medium fluence of 106 photons Å�2

per pulse.

3.2. Cumulative intensities and structure factors in the case
of nonstationary scattering

Three-dimensional sets of structure factors calculated for

PDB entry 2d0k in stationary and nonstationary cases were

compared by calculating the standard R factors for thin

resolution shells and extending zones (0, smax) (Fig. 7). The

developed fast algorithm for calculation of cumulative inten-

sities (x2.1) was used in the nonstationary case. For the low
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Figure 2
Eigenvalues ~��ð1Þ > ~��ð2Þ > ~��ð3Þ of the moment matrix (7) as functions of
sin�/� are shown in red (circles), blue (triangles) and brown (squares),
respectively. The fluence levels are 104 photons Å�2 per pulse (a),
106 photons Å�2 per pulse (b) and 108 photons Å�2 per pulse (c).

Figure 3
Conventional scattering factors (markers) and effective values of time-
dependent scattering factors (lines) are shown for C, N and O atoms
(grey, blue and red, respectively). Two fluence levels, 106 photons Å�2 per
pulse (a) and 108 photons Å�2 per pulse (b), are shown.



fluence value, only effective scattering factors were taken into

account, since corrections in this case are negligible. For the

moderate fluence, two variants for calculation of cumulative

intensities were tested, one with the main term |Feff(s)|2 only in

(10) and the other with the main term and the correction

|F(2)(s)|2. Similarly, for the high fluence the calculations were

performed with the main term only and with the use of two

corrections |F(2)(s)|2 and |F(3)(s)|2. In calculations of shell R

factors, the scaling factors were the same for all resolution

shells and were determined by optimizing the overall R factor

in the 1 Å resolution zone. In calculations of the ‘cumulative’

factors Rcum, the scaling factors were determined separately

for every zone 0 � s � smax = 1/d.

It follows from these figures that the effect of nonstatio-

narity is negligible at a fluence of 104 photons Å�2 per pulse.

Nevertheless, even in this case correction for nonstationarity

for high-resolution reflections might improve the accuracy in

high-resolution shells. For larger fluence values, the effect of

time-dependence of scattering factors is much more promi-

nent and should be taken into account.

3.3. Accuracy of simplified approaches

Analysis of the eigenvalues of the moment matrix (7) and a

comparison of the results of calculations performed with and

without high-order corrections (Fig. 7) show that even for the

case of large fluence values approximation of the calculated

intensity by the principal value is accurate enough. To estimate

the intensity more precisely, crystallographic R factors were

calculated between sets of structure-factor magnitudes calcu-

lated with and without additional corrections. The maximal

difference Rshell in resolution shells (up to 1 Å resolution) did

not exceed 0.002 for a fluence of 106 photons Å�2 per pulse

and 0.014 for a fluence of 108 photons Å�2 per pulse (below

0.005 in the resolution zone to 1.2 Å). This means that with
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Table 1
Optimal scaling coefficients for the sets of conventional and effective
scattering factors for C, N and O atoms.

Fluence (photons
Å�2 per pulse) kopt Bopt Rf

cum

104 1.001 0.0 0.000
106 1.089 0.0 0.040
108 3.779 0.5 0.099

Figure 4
Effective (markers) and correcting (lines) scattering factors for fluence
levels of 106 photons Å�2 per pulse (a) and 108 photons Å�2 per pulse
(b). Scattering factors for C, N and O atoms are shown in grey, blue and
red, respectively.

Figure 5
Comparison of conventional and effective scattering factors. Discrepancy
index (26) as a function of resolution for a set of optimally scaled C, N
and O scattering curves.

Figure 6
Optimally scaled effective scattering factors (lines) in comparison with
conventional scattering factors (markers) for a fluence level of
106 photons Å�2 per pulse. Scattering factors for C, N and O atoms are
shown in grey, blue and red, respectively.



these fluence values and resolution ranges, the approximation

of calculated intensities by the principal value

IcumðsÞ ’ j
PNatoms

j¼1

f eff
j ðsÞ expð�Bjs

2=4Þ exp½�2�iðs; rjÞ�j
2
ð27Þ

is accurate enough for practical work with biological macro-

molecules. At the same time, the use of effective scattering

factors instead of conventional scattering factors is essential

for accuracy in work with medium and high fluence values.

As mentioned in x2.1.3, in the approximation of synchro-

nized scattering factors the intensities can be calculated using

auxiliary factors calculated as the square roots of the time-

averaged squares of the time-dependent scattering factors

(18). In our tests, comparison of these scattering factors with

the effective scattering factors did not reveal a significant

difference. Even for the largest tested fluence, the values of

shell discrepancy factors (26) did not exceed 0.005 for the

high-resolution shells. Thus, for the fluence values considered

the differences in the time-dependence of scattering factors of

different atom types are negligible, and effective scattering

factors may be estimated by the square roots of the time-

averaged squares of the time-dependent scattering factors

~ff eff
� ðsÞ ’ ~ff synch

� ðsÞ ¼
R

~ff�ðs; tÞ
2
pðtÞ dt

� �1=2
: ð28Þ

(28) and (27) present the most straightforward method for the

calculation of cumulative diffraction intensities corrected for

the time-dependence of atomic electron configurations.

4. Conclusions

In the case of nonstationary scattering, straightforward

calculation of the diffraction pattern is significantly more time-

consuming than in the conventional case. The use of eigen-

decomposition of the time-averaged matrix of the pairwise

products of time-dependent scattering factors allows one to

present the diffraction pattern as a superposition of an

‘effective’ and a finite series of ‘correcting’ patterns. The

number of terms in the superposition does not exceed the

number of chemically different types of atoms in the studied

object and is small for biological macromolecules. The effec-

tive and correcting diffraction patterns may be calculated in

the usual way for biological crystallography and each requires

the same time for calculation as a conventional pattern. The

only difference is the use in the calculations of specially

derived effective and correcting atomic scattering factors

instead of the tabulated values. The derived scattering factors

depend on XFEL experiment parameters and are calculated

individually for a particular XFEL experiment.

Simulation of nonstationary diffraction by solving the rate

equations for the populations of electronic configurations

demonstrated that the influence of nonstationarity is negli-

gible for a photon fluence of up to 104 photons Å�2 per pulse,

which is the upper limit achieved in experiments with biolo-

gical macromolecular crystals. At the same time, for higher

fluence values, which are expected in the near future, non-

stationarity becomes as essential factor. The corresponding

corrections of calculated intensity values should be taken into

account in calculations.

Simulation of diffraction patterns for a test protein

demonstrated that for the considered fluence range (104, 106

and 108 photons Å�2 per pulse) the correcting terms are

negligible within the reasonable accuracy for biological crys-

tallography. As a result, the diffraction pattern may be

approximated by the principal term of the decomposition,

i.e. by the sole effective term. Generally, the corresponding

atomic scattering factors are the components of the principal

eigenvector in the eigendecomposition, which, however, can

be approximated in a simpler way as the square roots of time-

averaged squares of time-dependent scattering factors.

APPENDIX A
An efficient calculation of cumulative intensities

The approach suggested was essentially inspired by the paper

of Lorenz et al. (2012). In the stationary case, the computa-
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Figure 7
Comparison of calculated conventional structure factors for PDB entry
2d0k with the structure factors corresponding to modelled nonstationary
cases. Crystallographic R factors are shown for thin resolution shells (a)
and for extending resolution zones (b). Three modelled fluence levels of
104, 106 and 108 photons Å�2 per pulse are shown in grey, blue and red,
respectively. Solid lines show the results obtained with the use of the main
term in (10) only. Open circles and triangles show R factors accounting for
correcting terms.



tional complexity of a straightforward calculation of the

intensity I(s) for a particular s value using the formula

IðsÞ ¼
PNatoms

j;k¼1

fjðsÞfkðsÞ exp½�ðBj þ BkÞs
2=4� exp½2�iðs; rj � rkÞ�

ð29Þ

is proportional to (Natoms)
2, but it becomes proportional to the

first power Natoms if organized as a two-step procedure

(equations 1 and 2). This trick is unusable in the nonstationary

case (equations 5 and 6) since generally the elements of the

moment matrix A = ((Ajk)) defined by (6) cannot be presented

in the form Ajk = ajak. Nevertheless, one can present the

matrix A as a sum of simpler matrices

A ¼
PNatoms

	¼1

�ð	ÞAð	Þ; ð30Þ

where each of the matrices A(	), 	 = 1, 2, . . . , Natoms has a

desired form

A
ð	Þ
jk ¼ a

ð	Þ
j a
ð	Þ
k : ð31Þ

This follows from the eigendecomposition of the real

symmetric matrix

A ¼ VDVT : ð32Þ

Here, D is the diagonal matrix whose elements are the

corresponding eigenvalues of the matrix A, and the columns

of the matrix V are an orthonormal set of eigenvectors. Let

a
ð	Þ
1 , a

ð	Þ
2 , . . . , a

ð	Þ
Natoms

denote the components of the 	th

eigenvector (i.e. the 	th column of matrix V). Decomposition

(30) then takes the form

Ajk ¼
PNatoms

	¼1

� 	ð Þa 	ð Þ
j a

	ð Þ
k : ð33Þ

The intensity (5) may now be presented as

Icum
ðsÞ ¼

PNatoms

	¼1

�ð	ÞjF̂F
ð	Þ
ðsÞj2; ð34Þ

where the auxiliary cumulative structure factors F̂F
ð	Þ
ðsÞ are

calculated by the usual formula for structure factors, but with

artifical scattering factors aj(	)(s),

F̂F
ð	Þ
ðsÞ ¼

PNatoms

j¼1

a
ð	Þ
j ðsÞ expð�Bjs

2=4Þ exp½�2�iðs; rjÞ�: ð35Þ

As has previously been noted in the literature (Quiney &

Nugent, 2011; Lorenz et al., 2012; Curwood et al., 2013), (34) is

equivalent to the modal decomposition of Wolf (1982) and is

often referred to as a sum of coherent modes. In this paper,

we consider this decomposition just as a formal mathematical

presentation, without attempting to ascribe any physical

meaning to it.

The calculation of intensities by means of (35) and (34) still

requires Natoms times more operations compared with the

stationary case, but it can be drastically reduced if the number

of chemically different elements is small enough. Biological

macromolecules consist of a large number of atoms, but the

number of different elements is mostly limited to H, C, N, O

and S atoms. Let ntypes be the number of different elements in

the structure and 
(j) be a function that assigns to the jth atom

(in the full list of atoms) its type number 
. Let ~ff�ðs; tÞ be a

form factor for the �th chemical element. (We use the tilde

symbol to mark a scattering factor corresponding to a type of

atom, not to a particular atom in the model.) Let

T�ðsÞ ¼
P

j:
ðjÞ¼�

expð�Bjs
2=4Þ exp½�2�iðs; rjÞ�;

� ¼ 1; 2; . . . ; ntypes ð36Þ

be the partial sum for atoms of the �th type so that

Fðs; tÞ ¼
Pntypes

�¼1

~ff�ðs; tÞT�ðsÞ: ð37Þ

Formula (5) for the cumulative intensity becomes

Icum
ðsÞ ¼

Pntypes

�;�¼1

~AA��T�T�; ð38Þ

where T denotes the conjugate of the complex number T and

~AA��ðsÞ ¼
R

~ff�ðs; tÞ~ff �ðs; tÞpðtÞ dt: ð39Þ

Let matrix ~AA be presented as

~AA ¼ ~VV ~DD ~VV
T
; ð40Þ

where D is the diagonal matrix with the diagonal formed by

the eigenvalues ~��ð1Þ, ~��ð2Þ, . . . , ~��ðntypesÞ of matrix ~AA and columns

~vvð1Þ, ~vvð2Þ, . . . , ~vvðntypesÞ of matrix V are an orthonormal set of

eigenvectors. Formula (40) implies that

~AA�� ¼
Pntypes

	¼1

~��ð	Þ ~vvð	Þ� ~vvð	Þ� ¼
Pntypes

	¼1

~ff ð	Þ� ~ff ð	Þ� ; ð41Þ

with

~ff ð	Þ� ¼ ½ ~��
ð	Þ
�
1=2 ~vvð	Þ� ; ð42Þ

supposing that the eigenvalues are non-negative. The cumu-

lative intensity can be now calculated as

IcumðsÞ ¼
Pntypes

	¼1

Pntypes

�;�¼1

~ff ð	Þ� ~ff ð	Þ� T�T� ¼
Pntypes

	¼1

Pntypes

�¼1

~ff ð	Þ� T�

�����

�����

2

¼
Pntypes

	¼1

jFð	ÞðsÞj2; ð43Þ

where

Fð	ÞðsÞ ¼
PN

j¼1

~ff ð	Þ
ðjÞðsÞ expð�Bjs
2=4Þ exp½�2�iðs; rjÞ�: ð44Þ

As the result, the diffraction pattern in the nonstationary case

may be calculated as the sum of a small number ntypes of

stationary patterns I(	)(s) = |F(	)(s)|2, which can be calculated

in a conventional way by the squared magnitude of quasi-

stationary structure factors (44). These structure factors

resemble the usual form of structure factors, with the only

difference being in the scattering factors, which are now

auxiliary values determined by decomposition (40). The

computational complexity of these calculations exceeds that

for the stationary case by a small factor ntypes and can some-
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times be reduced to the complexity of stationary diffraction

calculations if some I(	)(s) are negligible.

The decomposition (40) is not unique. For example, the

eigenvalues may be renumbered, which results in permutation

of the columns of matrix ~VV. We suppose that the eigenvalues

are numbered in descending order, so that we can consider

I(1)(s) = |F(1)(s)|2 as the principal term in decomposition (21)

and the next terms as corrections. We call the auxiliary scat-

tering factors ~ff ð1Þ� ðsÞ the ‘effective’ value ~ff eff
� ðsÞ of the time-

dependent scattering factor and ~ff ð2Þ� ðsÞ, . . . , ~ff
ðntypesÞ

� ðsÞ the

correcting scattering factors. It should be emphasized that the

correcting scattering factors are not added to the effective

scattering factors directly. They are used as auxiliary entities

for the calculation of the correcting intensities summed in

(43).
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